Esri Story Maps are alright!

I know thesriuc_2015_smallat Esri story maps have been around for quite a while, but I am only finally learning how to create them now. For some reason, I was quite resistant to using them, but now that I have created a couple I have to say they could be really useful for teaching both GIS and just about anything geographical (I know my friends at Esri would be rolling their eyes – what can I say, I’m a slow learner!). The user interface for creating them could still use some tweaks, as I found there was a lot of clicking involved, but I have not yet tried uploading using a CSV file, which I have a feeling would alleviate that problem.

The first story map I created uses photos I took on a little walking tour from my hotel to Stanley Park and back in Vancouver, when I was there for the Canadian Association of Geographers Conference in June. I have a GPS receiver for my Canon 70D and I have to say it works like a charm! The receiver gets a signal within a couple of minutes, and then my photos are automatically geotagged. Of course, I also used my MotionX GPS app to record my track, which I have included in the story map as a separate map layer. It was a cloudy day, so the photos aren’t exactly spectacular, but it’s not too bad as a first effort. Maybe I’m just too new to this, but the embedded version below doesn’t seem as intuitive as the “full” version when it’s opened in a new window. (Edit: I tweaked the widths of my website page elements, so now the embedded versions render in their correct, “full” versions – much better. I also changed the Vancouver base map to satellite imagery).

I hope to experiment with the different templates available in the future but, for now, the basic walking tour format seemed to work best. I have also created one with photos from the Esri Education GIS Conference and main User Conference (click here to open in a new window):

Note: one thing I have noticed is that, if my browser window is too large, or too tall and skinny, the story map doesn’t render properly. I read on GeoNet that apparently it interprets the dimensions as being on a mobile device – Esri is working on fixing this. If this happens, you can just reduce the height of your browser window until it renders it correctly (it seems to want to be wider than high).

This first foray into Esri’s online applications is part of my new commitment to making better use of the Esri platform, beyond the traditional desktop suite. While I was at the User Conference, I had an “aha!” moment where I realized that all of the various components that Esri has been talking about for the past two or three years have matured and coalesced into a coherent and powerful platform. I’m sure that was their plan all along, but I have a feeling I’m not the only user who’s taken a while to figure out what it all means.

 

Live lecture/webinar hybrid experiment

I’m currently teaching two sections of the same introductory GIS course, one face-to-face (F2F), and one online.  This morning I tried a little experiment – I taught my regular F2F class in a lecture hall as usual, but I had a live webinar version of it online at the same time.  It went remarkably well, so I thought I would briefly explain what I did, why, and how.

What I did:

Students that did not attend the live lecture (in either section of the course) could see whatever I showed using the projector in class, which included PowerPoint slides, web pages, and a live demo of ArcGIS ModelBuilder.  They could hear me talking, but could not see me (no separate video feed of the instructor).  Besides this main window, there were two smaller windows, one for questions, and one for chat (these were not visible to the F2F students). I recorded the entire two-hour lecture, broken into two parts, that was then posted online for students who couldn’t watch live, as well as for those who may want to refer to it again later.  The students who attended the webinar version were from both sections of the course (I did a quick poll before class started).

Why I did it:

There were three main reasons why I wanted to try this.  I have been thinking about trying this hybrid approach for a while, but the current impetus was that I have a guest speaker coming to class next week.  After I invited him, I realized that I couldn’t ask him to do what I have been doing up until now, namely recording a separate podcast version for my online students and then teaching the lecture to my F2F section.  I wanted to have a way to capture him speaking in class in one shot.  Second, I have been a little uneasy about the fact that my online students were not benefiting from the spontaneous questions, discussions, demos, and announcements that would come up in class, and I wanted to capture that.  Third, my in-class attendance has dropped off dramatically in the past couple of lectures (I’m guessing this is due to  the F2F students having access to the online lecture podcasts) and I wanted to have another way for them to participate if they can’t (or won’t) attend in person.

How I did it:

Aside from the usual software (PowerPoint, using presenter view; ArcGIS; Chrome browser) I used Adobe Connect for the webinar.  I have used this for about two years for holding online office hours, so I was quite comfortable with setting it up.  I presented using my own laptop (Dell Latitude E6520) and used my own newly-purchased wireless lavalier microphone.  After consulting with my amazingly helpful colleagues through the U of T Educational Technology Interest Group, as well as a professional sound engineer (a friend of a friend), I decided to go with the Sennheiser ew100 G3 system.  It worked very well, although the sound today was a bit muddy.  I think this is mainly a matter of my learning the correct settings, especially mic sensitivity.  I can also increase the sound quality settings in Adobe Connect next time, which takes a bit more bandwidth, but may be worth trying.  I used my iPad (3rd generation) with the Adobe Connect app so I could see how the webinar looked from the students’ perspective, and it was easier for me to check for online questions without having to keep switching windows on my laptop.  I didn’t go so far as to monitor the audio this way, but will do so next time (at least to check the quality).

How it went:

Really well!  I had about 15 students watching online, and they were able to ask questions and use the chat window to talk with each other (this was minimal and not distracting). I got some very positive feedback and will definitely be doing this again.  I’m really pleased that my online students now have the option of participating in a live lecture.

Student view of the webinar
Student view of the webinar
Instructor view of the webinar
Instructor view of the webinar

John Snow and serendipity

I was skimming through my Twitter stream this morning and came across a tweet from the intrepid Michael Gould (@michael_d_gould) mentioning David J. Unwin’s digital workbook “Numbers aren’t nasty: a workbook of spatial concepts“.  I’m a big fan of David Unwin’s Geographic Information Analysis (co-authored with David O’Sullivan), so I downloaded the workbook (it’s free) and the accompanying data sets.  I was intrigued to see that this included coordinate data for John Snow‘s map of cholera deaths.  Virtually every GIS student learns about the pioneering epidemiological work John Snow did using spatial analysis of cholera deaths, tracing them to the infamous Broad Street pump.  I thought I would be clever and quickly map them using Google Fusion Tables.  What I soon realized was that the coordinates were created using an arbitrary system that placed them somewhere in Africa and, as is often the case, realized that I needed to slow down, take a closer look at the data and what I was doing, and see what was going on.

First, I did some quick online searching, and was surprised that I wasn’t able to find a georeferenced version of the data.  So I went back to the data at hand.  In Unwin’s workbook, he states that the points were originally “digitized at the request of Professor Waldo Tobler (UCSB) by Rusty Dodson of the US National Center for Geographic Information Analysis from a reprint of Snow’s book On Cholera (Oxford University Press, London)”. Since the original data had an arbitrary coordinate system, I used ArcGIS 10 to georeference an image of the map using the Bing Maps hybrid base map, and then spatially adjusted the points (both deaths and pump locations) to match the image.  I then used the ArcGIS Online topographic base map to create the following figure:

Locations of water pumps and cholera deaths
Locations of water pumps and cholera deaths from John Snow's map (the Broad Street pump is the blue symbol at the center of the map)

 

As this is based on a sketch map scanned from a book, all locations should be treated as approximate.

I must admit that I have sometimes neglected to mention John Snow and his work in my introductory GIS course (for shame!), so now I have some actual GIS data and a modern map to show in class.  It may also turn into a good opportunity to introduce web mapping as well.  After I saw Michael Gould’s original tweet, he and I discussed how we had both been meaning to find the replica Broad Street pump in London (tip: the street is now called Broadwick).  Naturally, Mike tweeted a link to an ArcGIS Explorer map of pump locations which of course inspired me to put my version of the pump and death locations on there as well:


View Larger Map

I hadn’t used ArcGIS Explorer much, and intend to incorporate it into my courses, so this was a good excuse to try it out.  Once I got it on the web, I did another search and found that someone else had already put a similar version online – oh well!  At least I learned a lot by going through this exercise, and what else was I going to do on a Friday afternoon?

I should also mention that I came across a simple but very interesting example of spatial analysis of the data done by what appears to be a student named John Mack.  His web page inspired me to start fooling around with the kernel density tool, and I came up with a quick example:

Density of cholera deaths from John Snow's map
Density of cholera deaths using a 100 m kernel density function

I will be the first to say I made this as a quick example, and would not put too much faith in it.  However, I may spend more time on this later, as it might be a good data set for illustrating density analysis.

So, there you have it.  Out of one tweet I read this morning came an entire day’s activity and some data and figures I can use in one of my GIS courses.  Twitter can eat up a lot of time, but sometimes I come across little gems that can be really interesting and useful.

Update: I have created a map data layer package of the pump and death locations that can be downloaded from ArcGIS.com.

Update: I have created zipped shapefile and KML versions of the files as well, both in GCS (WGS84).  In both versions, there are three files: one file contains one point location of the Broad Street Pump, one files includes all of the pumps in the original map (including the Broad Street pump) and one file contains the cholera deaths recorded on the map.

 

Paper maps for driving not dead yet

Paper map

I was recently contacted by a Toronto Star reporter for an article she was writing about paper maps vs. GPS for navigation (Map publishers facing a rough road, Aug. 19, 2011).  She was asking whether I thought people used or needed paper maps anymore and if they would still be around in five years.  I thought it was an interesting question, and told her how I still have a collection of paper maps in my own car. They almost never get used, as I tend to rely on my iPhone (I quite like GPS Drive by MotionX, as I can pay as I go, one month at a time), but I keep them there (along with a good old-fashioned compass) just in case my phone stops working.  I love technology, but I’m not ready to rely on it 100%, especially when I’m driving into parts unknown, where cellular coverage may be spotty or non-existent.  Yes, the iPhone assisted GPS will work without a cell signal, but the navigation and mapping apps won’t be able to download data, which makes the GPS location pretty much useless.  One way to get around this is to download map data ahead of time, using apps like Avenza’s PDF Maps, which I plan to test the next time I’m travelling outside of Canada and want to use my iPhone’s GPS without incurring exorbitant data roaming charges.

To get back to the reporter’s question, I predicted that paper maps would not go away anytime soon.  Even though we all tend to rely on technology more all the time, and mobile map usage is growing fast (the number of smartphone map users increased 75 percent over the last year in the U.S. according to a recent comScore report) I pointed out that only about one third of Canadians and Americans own a smartphone (32.8% in Canada, 32.2% in the U.S. according to another recent comScore report).  I mentioned that this is a form of digital divide, since smartphones are more costly to buy and use, and that we can’t assume that everyone has one.  We also talked about built-in GPS options on new cars but, again, this is still a relatively premium option.  I imagine the adoption rates will increase over the next few years (for both smartphones and built-in GPS), but I still can’t see a day where I will throw out my trusty paper maps and compass – they don’t get used much anymore, but I’m still glad I have them!

Engaging new GIS students with web mapping

Simultaneously published at V1 Magazine with thanks to Matt Ball, co-founder and editor, Vector1 Media.

Not that long ago, I considered “web mapping” an advanced topic, best left to be taught in a senior GIS course.  While that can still be the case, depending on how it is defined, the fact is that creating a map of your own data on a web page has become something anyone can do in a matter of minutes.  This was recently made clear to me when I decided to find out what Google Fusion Tables were, as I had been hearing a lot about them on Twitter and Google+ (particularly by the prolific and informative  Mano Marks, Senior Developer Advocate, Google Inc.).  I was amazed that I was able to geocode a list of one hundred postal codes using Google Fusion Tables less than five minutes after I learned what Fusion Tables even were.  I was struck by how useful this would be for my introductory GIS course to quickly get students’ attention, establish the relevance of what they would be learning, and promote discussion of several topics that would be covered in the course, including data input, map design, coordinate systems, projections, and interpretation and analysis of geographic data.

In the past, I have asked students to anonymously provide their postal codes on the first day of class so that I could geocode them in ArcGIS and then use this as a launching point for a discussion on geocoding, the spatial resolution of postal data, and what might be interpreted from their locations.  Now I see using Google Fusion Tables as a way to take this a step further, by allowing students to try it themselves and see how easy it is to collect data and create their own web map.

Students are already familiar with web maps in general and, likely, with Google maps in particular.  They already understand and appreciate the power of web maps.  My hope is that the simple act of creating their own custom-made Google map with their own data will empower them.  In other words, they will realize that they can do this themselves, and embed the results in any web page.  They can now move from passively mapping addresses in the standard Google Maps interface to more proactively mapping their own data in their own way.

With this simple exercise, students can see geography in action; how data can be collected,  mapped, and then analyzed and interpreted.  They can start to think spatially and analytically: How many students live within 1 km of the classroom?  How many live more than 10 km away?  What can they say about the points – are they clustered? Random? A bit of both? Does distance affect the pattern (e.g., clustered close to campus, but more random with increasing distance)?

Students can also be encouraged to critique the results of this web mapping exercise: Is there a legend?  Is there much flexibility in choice of symbology?  What do they like or dislike about the Google base map?  How does scale affect the data displayed and the representation of it?  If we zoom in and out from the local to the regional, national, and international level, how does the look of the map change?  This is a great way to introduce map projections and their scale-dependence (i.e., that different projections are appropriate for different scales).  Since I will not have introduced the concept of geocoding beforehand, I can ask them how Google “knows” where to place the points for the postal codes.  This will get them thinking about data sources and the “behind the scenes” data processing that goes on in order to make a seemingly simple map.

My approach has always been that, since many of my students will only take one GIS course, the main emphasis of that course should be on learning to create a well-designed and useful map, as that is likely to be the most useful skill for them.  My traditional assumption, which I now realize is rather old-fashioned, is that the maps they would want to create would be printed or perhaps used in a PDF file created for a report.  The reality is that the more likely medium they will want to use is the web.  Even the most casual mappers will want to share something online and, by teaching them how to do this early in their first GIS course, I believe this will give them a sense of empowerment and motivation that will, in turn, help them become more engaged with the course material.  To be sure, more complex web mapping is still something that is more appropriate for an advanced class (and a different instructor) but introducing some of the fundamental capabilities early on can provide a great opportunity for getting new GIS students interested in mapping and geographical analysis.
 

P.S. I realized after I posted this that I hadn’t actually included my little test case, so here it is:

Taking an inventory of my teaching material

I have tried many times, in many ways, to create a well-organized and complete inventory of all my teaching material, and so far it has always eluded me.  I want to have one document where I can track all of my lecture topics, concepts, skills, tools, readings, and assignments.  I’m not talking about all of the content itself, just an inventory of what I have that I can use to review, assess, and improve my GIS curriculum (I teach five different GIS courses).  My attempts all seem to end up in MS Word, Excel, or OneNote.  I usually come up with a new, wonderful method, try applying it, and then find that it doesn’t quite work, spend more time noodling around with it, and then eventually abandon it before it’s finished.  Well, I think I may have finally found a way that will work.  Why?  Because it is about as simple as I can possibly make it.  No tables, no charts, no colour coding; just a simple hierarchical set of headings, subheadings, and bullet points in MS Word that match the topics, sections and slides I use in PowerPoint.  It seems obvious to me now, which is probably a good sign.

The highest level in the inventory is the topic (e.g. “Map Projections”).  Within each topic, I decided that there are three main components: theory, implementation, and readings.  The theory portion is organized under each topic as subheadings, and below these, individual bullet points that correspond to one main concept.  The implementation portion is called “Tools and Skills” to recognize that some things can be neatly itemized as specific tools in the software, while others are combinations of tools or other methods.  The last section is a list of references that, for now, is just for me to track where I’m drawing ideas from, but can also be used for proper citation later on and as a reading list for students (likely in a condensed form).

Now that the above framework has been sketched out, the first phase of my curriculum renewal will be to populate the inventory using only my existing material.  So far I have added the headings from my PowerPoint files, which was relatively easy, as I have “outline” slides at the start of each lecture and title slides for each section.  What I’m finding more time-consuming though, is adding in the tools, skills, and references, as I have never properly listed these anywhere before, at least not in a way that was complete and all in one place.

Once I have filled in all of my existing material, the real fun will begin in phase two, where I will systematically go through the UCGIS GIS&T Body of Knowledge, the Geospatial Technology Competency Model (both of which influenced the framework above), ESRI’s list of skills measured for technical certification (I’m just going to start with the ArcGIS Desktop Associate list), as well as a pile of textbooks and workbooks, to identify new material that should be included.  I will also have to edit some existing topics to make room for the new ones.  The challenge here is that each of the sources I’m using to help assess my curriculum has its own way of naming and organizing topics, a sort of conceptual taxonomy.  I will try to use these as much as I can, but inevitably find myself wanting to revise them to make them more easily understood by those new to the field.

The last phase will be to actually create the new lectures and assignments, which is no small task. As tedious and time consuming as all of this may sound, I’m actually finding it very satisfying so far.  I have wrestled with this for years, and finally think I have something that will streamline my workflow, enhance my curriculum content, and give me a simple inventory that is clearly organized and that, hopefully, will help students navigate through all the material in a way that enhances their learning experience.  Beyond that, I just think it’s fun (yeah, I’m a little strange that way).

 

GIS instructors and teaching with technology

It’s not much of a stretch to say that most GIS instructors are likely also techies (Mirriam-Webster: “a person who is very knowledgeable or enthusiastic about technology”), myself included.  It follows then, that we would also be interested in exploring the use of technology for how we teach, not just what we teach.  I attended an on-campus Educational Technology Workshop yesterday and, like many there, was struck by the level of attendance and interest.  There were some great talks on lecture capture, providing a “web option” for an in-class course, and using clickers and tablets in the classroom.   I have been considering a number of possible new ways of teaching with technology, and find that I have to remember to ask myself the following:

  • What is the problem this new technology will help me solve?
  • Is there actually a problem, or am I just being tempted by the latest thing?
  • Will students learn more, or faster, or more effectively?
  • Will it improve the student experience?
  • What is the learning curve for me, and for my students?
  • What are the long term implications/obligations for maintenance and improvement both in time and money?

It’s one thing for me to enjoy being an early adopter, but many of the things I try are discarded (e.g., I bought a Bluetooth GPS for my laptop before the days of smartphones, and never once got it to work – it makes a good paperweight).  However, I am much more conservative about using the same approach with how I teach my students.  I know they appreciate my efforts to improve their learning experience, but I have to be careful I don’t invest a lot of time and/or money only to find out something doesn’t work or actually make things worse.  Having said that, part of what I will be doing over the next few months is spending time researching new teaching methods, exploring options, and thinking about what I might do to take advantage of my techie nature in a way that improves my teaching.  Can’t wait!

Are you using technology to teach GIS?  If so, I would love to hear what you’re doing and how it’s working…

 

Should programming be part of a university GIS curriculum?

In my last post, on GIS training vs. education at university, I referred to a paper by Fagin and Wikle (2011) who had conducted a survey of GIS instructors in the U.S. regarding perceptions of the importance of various GIS subject areas.  One finding that I thought deserved its own post was that “Most respondants (65.9%) indicated that programming was either not covered/unimportant or only tangentially important” (p. 7, italics by original authors, boldface added).  I found this fascinating, as it appears to be so at odds with the general impression I have, via Twitter and elsewhere, that anything to do with GIS and programming is the hottest thing out there and where all the jobs are.  Perhaps this perception is biased, as I find that more developers seem to be on Twitter, and highly active on it as well, compared with other GIS practitioners.  I still wonder though, why do so many instructors dismiss programming as not an important topic when teaching GIS?

This is just a guess, but one reason may be that many of the instructors surveyed have little or no programming background themselves, and so don’t teach it (myself included).  I took programming in high school and first-year university many years ago, and have taken ArcObjects and VBA courses since then.  Although my programming skills are now virtually non-existent, I have benefitted greatly from having a basic understanding of it (e.g., loops, subroutines, if-then statements).  Having said that, I don’t teach programming in any of my courses, and have long wrestled with this.  My experience has been that programming is not something most introductory or “general” GIS students want (and may actually scare them off), but that it is likely more appealing to the advanced students who may be considering a GIS-related career.  Just to be clear: I’m not one of those instructors who thinks programming is not important, but I am one who would have say it is “not covered”.  One of the things on my study leave to-do list is to consider adding something like an introduction to Python section to my advanced GIS course.

Another possible reason for this lack of programming in university GIS curricula may also be that instructors see it as being too far towards the training end of the spectrum.  Does programming fall under training or education?  My thinking is that learning how to program (the actual process of coding) may be more training-oriented, but knowing what to code and why requires education as well.  Regardless, it appears from the results of the Fagin and Wikle study that, even though GIS-related programming appears to be in high demand, the people who are getting those jobs likely did not acquire those skills at a traditional four-year university, or at least not through its GIS courses (I may be completely wrong on this though, so please feel free to correct me).

I was chatting with a computer science professor about this yesterday, and his suggestion was that I recommend one of his department’s first-year courses that introduces students to programming by using Python.  I think this could be a great course for some of my GIS students who want to augment their GIS courses.  Additionally, I am considering including at least a brief introduction to Python as part of a section I am revising and expanding on ModelBuilder and geoprocessing.  The questions I’m currently thinking about are: can I really provide much of an effective introduction in perhaps 4 hours of class time?  I would love to have a whole new course on this, but don’t have the time in my teaching schedule, nor the expertise to mount such a course at this point.  Or should I just point those that are interested towards a more general-purpose Python course in the computer science department?  In a recent LinkedIn discussion (in the GIS, Mapping and Geo Technology group) about what languages a new GIS professional should learn, Python definitely came out as the favourite, but are there others?  Finally, is programming becoming as essential as I think it is, or is it still beyond what a typical GIS professional (if there is such a thing) should be expected to do?  If GIS developers didn’t get their programming background from a university GIS curriculum, where did they get it? So many questions!  If you have any comments, I would love to hear them.

 

Reference

Fagin, Todd D. and Thomas A. Wikle.  2011.  The instructor element of GIS instruction at US colleges and Universities, Transactions in GIS, 15(1): 1-15.

 

 

GIS training vs. education at university

Many undergraduate university students take GIS courses with the expectation that these courses will increase their chances of finding gainful employment upon graduation.  While I believe that the GIS courses I teach can help students develop marketable skills, I think that there are sometimes differing opinions between instructor and student about what students should learn, what will help them in the short vs. long term, and what the right balance should be between education and training.  This was highlighted in a recent article by Fagin and Wikle (2011) entitled “The instructor element of GIS instruction at US colleges and universities”.  The authors do a nice job of summarizing the evolution of GIS instruction and instructors, and then report the results of a survey they conducted of American GIS instructors and “their perceptions concerning the importance of various GIS subject areas” (p. 1).  One passage that really jumped out at me concerns the challenges GIS instructors face:

For instance, one respondent lamented the problems of balancing the intellectual foundations of GIS with the desires of students wanting little more than software training. This sentiment was further reflected by another respondent’s recognition that many students across institutional types are seeking training to better prepare for the workforce, while many faculty are more concerned with research and the theoretical side of GIS. Nonetheless, regardless of the emphasis placed on theoretical considerations, respondents from all institutional types and educational levels signaled the importance of teaching software functionality and other practical applications of GIS.  (p. 10)

In the first class of my introductory GIS course, I explain the difference between education and training (based on definitions I heard Michael Goodchild give at a conference talk many years ago), and tell them I try to do both, but with more emphasis on education.  This is based on my belief that the underlying theoretical concepts as well as the critical thinking, problem-solving, and communication skills I hope to impart will serve them well, long after they have forgotten which buttons to push to perform a particular function with certain software.  It’s important that students see the value in the education aspect, both to manage their expectations from the start, and also to fuel their motivation once they see that value.  Beyond that, there are many opportunities for further software training once they’re out in the workforce, while it is much more difficult and time-consuming to get more education.

It seems to me that there is no clear separation between education and training, theory and practice, but that it is more of a continuum.  I always emphasize in my courses that students should know why they execute certain steps or choose particular parameters in a dialog box and not just memorize them, and that they should understand (conceptually, at least) what steps the software is going through to perform a particular function.  In other words, when it comes to GIS, I don’t know how you can have one without the other.

So what is the right mix of education and training that will best prepare students for life after graduation?  As I mentioned in a previous post, I sometimes have to remind myself that the majority of my students will not pursue GIS-related careers.  For them, one or two GIS courses is enough, so I try to give them a solid understanding of basic GIS concepts and the software skills they will need to perform simple mapping and analysis.  Beyond that though, I want to help them learn to think spatially, and to be able to critically analyze maps and other geographic information that they will encounter in their lives, both through work and elsewhere.

For those students who take more courses with me and are more likely to pursue GIS-related careers, I continue the process of building a solid theoretical foundation as well as teaching the practical skills they will need in order to be able to learn more on their own.  I think most GIS practitioners would agree that much of what you learn is self-taught while on the job.  When you have a task to complete or a problem to solve, you must have the requisite combination of conceptual understanding, problem-solving skills, and knowledge of the software to be able figure it out and get the job done successfully.  You have to be able to think, learn, analyze, problem-solve and then effectively communicate your results to someone else.  The software training I provide will help them get that first job, but the conceptual and theoretical understanding and the critical thinking and problem-solving skills (the education component) will continue to help them as the software changes and their professional role evolves.

 

Reference

Fagin, Todd D. and Thomas A. Wikle.  2011.  The instructor element of GIS instruction at US colleges and Universities, Transactions in GIS, 15(1): 1-15.

 

Watching students write their final exam

This morning I spent 3 hours watching my students write their final exam.  It’s a strange experience, as I want them all to do well, but know that some will and some won’t, for a whole host of reasons.  You might think that spending 3 hours pacing around a room might be dull (and I admit sometimes it can be), but I usually find myself a bit on edge.  Stressed is too strong a word, but I definitely have some nervous tension.  Why?  One reason is that the students are stressed, which tends to rub off on me.  Another reason is that I always wonder if I have made the test too difficult or too easy.  In a 3 hour exam, if all of the students are still there at the very end, some on the verge of tears, then I can only conclude that I made it too long and/or too difficult (when I first started teaching, this happened more than once).  If they all leave after the first hour of a three-hour exam, with big smiles and a spring in their step, then I probably made it too short and/or too easy (this doesn’t happen too often).  I always remember chatting with a senior colleague, when I was still a rookie and he was on the verge of retirement, who told me that after all his years of teaching he still could never be sure how a particular group of students would do on a test.  At this stage, I usually have a fairly good idea, but you still never know for sure.  I design my exams to take about 2-2.5 hours to complete and I give them 3, so that time is not a factor in their performance.  Others may think differently, but I feel I can adequately survey their knowledge of the course in that time, and I know that students appreciate this approach.

Another source of tension comes from the fear that I have made some egregious and undiscovered error when I created the exam.  Sure enough, two minutes after the students started this morning, one of them politely pointed out to me that questions 2 and 3 were identical – aaagh!  I hate it when I do that!  I must have proofread that exam five times before submitting it for duplication, but still managed to miss the mistake.  It wasn’t a huge problem, as excluding one of the duplicates made the exam out of 77 instead of 80, but it still bugs me.  Fortunately, those errors are rare (really!).  At this point, I should mention that, if you are a former, current, or future student of mine, I don’t want you to think that I’m on the verge of a nervous breakdown during every exam – I do manage to keep myself together.  :-)

On a more positive note, the best part of a final exam (for me at least) is when I know I’ve set a reasonable exam, and a student finishes, confidently hands it in, thanks me for the course, and wishes me a great summer.  I love it when students do well, and it’s so satisfying when it’s clear that they liked the course, learned the material, and did well enough on the exam that they have a smile on their face at the end.